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ABSTRACT 

Intense transient electromagnetic pulse fields may drive a ferro- 

magnetic shield Into saturation, thus reducing the shielding effectiveness 

of that shield. Often shielding computations Ignore saturation effects due 

to the complexity of the equations. This memorandum reduces the complexity 

of the calculations by combining the approaches of several authors. The 

ferromagnetic material characteristics are Incorporated directly Into the 

field equations, amenable to computer solution. 

A math model of the material characteristics Is presented. The mag- 

netic permeability at a point In the ferromagnetic material Is expressed as 

a function of H. The boundry conditions of the magnetic field equations In 

the time domain are developed. The numerical solution for the field emerg- 

ing on the inside surface of an infinite sheet is accomplished by solving a 

differential equation subject to the boundry conditions.  Certain approxima- 

tions are indicated to simplify the calculations. The computer flow diagram 

la illustrated. 
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1.  INTRODUCTION 

When intense electromagnetic fields, such as the transient field associated 

with the nuclear electromagnetic pulse (NEMP), drives a ferromagnetic shield 

into the saturated region, a degradation in shielding effectiveness occurs. 

In the past the time domain solutions for NEMP shielding computations have 

ignored saturation because of the increased complexity of the equations which 

must be solved. 

A numerical solution, amenable to computer utilization, for pulse 

transmission through an infinite ferromagnetic sheet was derived by 

Merewether[l]. A classical finite difference technique was used to solve 

the appropriate nonlinear diffusion equation for the field distribution 

inside the ferromagnetic sheet. Although his solution treated nonhomogeneity, 

an isotropic material was assumed. 

A far more simple solution was presented in a paper by Young [2] and 

later in another paper by Ferber and Young r3]. In that brief traveling wave 

solution, the diffusion of the fields into the ferromagnetic material is 

approximated via solution of a first order linear differential equation. 

On that basis, a simple expression for diffusion time for computing saturation 

punch through is obtained. That work is useful for rough estimates of the 

effect of saturation but is severely lacking in accuracy because of many of 

the approximations made. Namelv, the material is assumed to be both 

homogeneous and isotropic, and the nonlinear effects are ignored. That 

is, the permeability is assumed to remain constant. While obviously in the 

real world we know that the permeability, at least for the isotropic case, can 

be expressed as a single valued function of the magnetic field intensity at 

a point in the ferromagnetic material, and is obtainable by curve fitting 

to the B versus H characteristics. 

-1- 



Some interesting numerical solutions for steady state problems have 

been presented based on a scalar magnetic potential [4] and a solution 

based on a vector magnetic potential [5], However, examination of 

Maxwell's equations for the time transient case, we see that a scalar 

vector potential can not be defined for time transient problems. This 

is because definition of a scalar magnetic potential can not satisfy both 

the curl and the divergence equation when we look at the differential 

equation form of the field equations. However, definition of a vector 

magnetic potential is valid. 

This memorandum essentially presents Merewether's results [1], however, 

incorporates some interesting material from references [4] and [6], Namely, 

the technique of incorporating the ferromagnetic material characteristics 

directly into the field equations, and a numerical approximation to the 

differential equation which is amenable to computer solution.  It is 

hoped in the future that a solution based on a magnetic vector potential 

can be developed for problems such as this. 
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2.     MATHEMATICAL MODEL OF MATERIAL CHARACTERISTICS 

The magnetic behavior at a point In a ferromagnetic material Is 

conventionally described In terms of the B versus H characteristics where 

the anlsotroplc nature of ferromagnetic materials results In the familiar 

hysteresis or B-H loop. We are specifically treating magnetic field solu- 

tions for that class of ferromagnetic materials which can be represented as 

Isotropie media.  Thus the magnetic permeability is a scalar point function 

as opposed to a tensor function. This scalar point function is derivable 

from a single valued averaged approximation of a normal B-H characteristic. 

The average B versus H characteristics for a typical annealed low 

carbon steel [A] is plotted in Figure 1. This characteristic must be ex- 

pressed in mathematical form as a single-valued function of B versus H.  In 

almost all cases there is considerable latitude in what one may consider as 

a satisfactory mathematical representation of an averaged B-H curve.  For 

the material in Figure 1, an excellent curve fit is obtained with the follow- 

ing equations 

B - 4000yoH - 50.2656x10^ 
0 i H < 79.5775 (2-1) 

107 
B - J^- y  [1 - 0.6exp(-O.0083776(H-79.5775))] (2-2) 

79.5775 < H < 1069.6067 

and 

B - 0.9998 + M   (H-1069.6067) 1069.6067 < H (2-3) 'o 

These expressions are based on rationalized MKS units where B is in webers 

per square meter and H  Is in ampere turns per meter. 

The magnetic permeability at a point  in the  ferromagnetic material 

is expressible as a function of H by the following relation. 

II - ^ (2-4) 
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i 
By substitution of (2-1),(2-2), and (2-3)  into (2-4),  we obtain formulas for 

the permeability as  single-valued functions of H.    The curve  showing relative 

permeability versus the magnetic field intensity H shown in Figure  1 was plotted 

based on these formulas and is presented to illustrate the strongly nonlinear 

behavior of the ferromagnetic material.     For very strong saturating fields the 

relative permeability of the material  approaches unity as we expect it  to. 
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3.  MAGNETIC FIELD EQUATIONS IN THE TIME-DOMAIN 

The differential equations applicable to the fields diffusing through 

ferromagnetic material such as steel, operated in the saturated state, are 

obtainable from Maxwell's equations. Namely: 

VxE = - |f (3-1) 

VxH = OE (3-2) 

and     V'B = V'D = 0 (3-3) 

From (3-1) and (3-2) we can readily derive 

V2H = yo|^ (3-4) 

If we consider the geometry illustrated in Figure 2, where we will 

investigate the propagation of a plane electromagnetic wave through a sheet 

of infinite extent and of thickness "a". To simplify the problem the wave 

is considered only to have a "y" component of magnetic field intensity and 

propagating in the positive "x" direction. On this basis, and by performing 

the curl operations indicated in equations (3-1) and (3-2) we obtain the 

relations 

f = aE        •. _ (3-5) 

j      3E     on ,_ ,, s and   07 = ^ (3-6) 
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Now, for a wave propagating into the sheet illustrated in Figure 2, the fields 

in Region I can be described by the following mathematical relation: 

ECx.t) - EI (t " f ) - EJ C* * f ) f3"7) 

■t (t - |)  Ei Cf * ) 
H(x,t) « -i— ^— ♦ -S-JJ S— (3-8) 

o o 

In region II, the electromagnetic field components are found via 

solution of equation (3-4). From this, and (3-5) it is readily found that 

the applicable differential equation reduces to: 

3x 

Now the boundary conditions which must be satisfied between the three 

regions are obtainable from evaluating the equations for E and H in regions I  & III 

at the surfaces.      For instance,  by evaluating (3-7) & (3-8) at x=o we obtain: 

E(o,t)  ♦noH(o.t)    =    2E*(t) (3-10) 

Similarly, from the equations for E and H for region III (not presented) we obtain: 

E(a,t) -n0H(a,t) = 0 (3-11) 

The problum at hand is the solution of the differential equation (3-9), 

subject to the boundary conditions (3-10) and (3-11), Utilizing the curl 

relations (3-5) and (3-6), the boundary condition equations become: 

~H(o.t) +noH(o,t)  = 2E,*(t) (3-12) 
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Figure 2.  Plane Wave Propagation through an Infinite Sheet 
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5^|H(a.t) - noH(a,tJ = 0 (3-13) 

The electric field transmitted through the sheet into region III, which 

is of prime interest, is given by (at x = a): 

E3(t) =  n0H(a,t) (3-14) 

We will proceed to indicate a solution for H(a,t) based on numerical methods. 
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4.     NUMERICAL SOLUTION AND COMPUTER FLOW DIAGRAM 

To solve for the  field emerging on the inside surface of the infinite 

sheet,  it  is necessary to solve the differential equation  (3-9)  subject to 

the boundary conditions  (3-12)  and (3-13).    As a first step, a rectangular 

mesh of points is described in the x-t plane.     In the x direction nodes are 

taken at uniform spacings between x =0 and x = a.    In the t direction,  nodes 

are taken at uniform    spacing from t = 0 tc t = T., where T. is the maximum 

estimated duration response time.    The derivations in (3-9), (3-12)  and 

(3-13) are then replaced by the difference approximations: 

I 

H(x * l,t)  * ll(x -  l,t)  -  2H(x.t) =    oy H (x,t ♦ 1)   - H(x,t -  1) (4-1) 

H(+  l,t)   - 2H;(t) 
2E1^    *    a 2Ä * V^ (4-2) 

0    .    IH(a.t)   -Hta-l.t)   .  ^^ 

x 
(4-3) 

Where in the previous equations the permeability is taken as the mathematical 

model of the form indicated in Section 2.0 of this memorandum,  and is evaluated 

at each point in the mesh once each iteration cycle.    The solution is  effected 

by rearranging  (4-1)   to solve for H(x,t), and by proceeding sequentially through 

the array through sufficient iterations until  the solution has converged to 

reasonable accuracy.     The subject of convergence will not be discussed here, 

but in computer programs investigated in  [4]   and [6]   it was found that sufficient 

accurancy is obtained with well under 100 iteration cycles.    Accuracy will be 

related to mesh coarseness,  magnitudes of the driving field, the material 

permeability math model, and other factors. 
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A computer flow diagram is indicated in Figure 3. By computer execution, 

accurate time domain solutions for the wave emerging on the far side of the 

metal sheet can be obtained. 
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Figure  3.     COMPUTER PROGRAM FLOW DIAGRAM FOR SOLUTION OF 
DIFFUSION OF ELECTROMAGNETIC PULSE THROUGH FERROMAGNETIC 
MATERIAL. 
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5.0 CONCLUSIONS 

When pulse anplitude of an incident electromagnetic wave drives the 

surface of a shield into saturation, degradation in shielding effectiveness 

occurs.  The method described in this nemorandum permits accurate computer 

solution for the time response of the wave propagating through a ferromagnetic 

sheet. 
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